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1. Introduction

The first parafermionic two-dimensional conformal field theory was introduced in 1985

in the classical article by V. Fateev and A. Zamolodchikov [1]. Parafermion fields have

fractional conformal dimension and are not required to be local to each other, the order

of their mutual singularity can be any real number. Parafermionic algebras can be seen

as a generalization of standard conformal chiral algebras (vertex algebras in mathematical

literature) to the case of mutually nonlocal fields.

In that paper [1] the authors study the ZN invariant parafermionic conformal field

theory with parafermion conformal dimensions being ∆i = i(N − i)/N and show that this

theory is equivalent to the sl(2)N/u(1) coset. Shortly after that in [2] the same authors used

the ZN parafermions to build the minimal models of the N = 2 superconformal algebra

and in [3] they studied a new Z3 parafermionic theory generated by currents of dimension

4/3.

In 1987 D. Gepner [4] introduced new parafermionic algebras describing coset theories

of type g/u(1)r, where g is any simple Lie algebra and r is its rank. Conformal dimensions,

fusion rules modular properties and partition functions were found in this paper. However

the exact algebraic structure of the theory (e.g. structure constants) remained unclear.

Later on parafermions (mainly the classical ZN parafermions from [1]) were widely

used in different areas of conformal field theory and string theory. A search for new ZN
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invariant parafermionic conformal field theories was a subject of a number of papers during

the last 15 years, we would like to mention some of them. Furlan et.al. [5] studied gen-

eral ZN invariant parafermionic theories using the correlation function technique. “Graded

parafermions” were introduced in [6], these are based on the osp(1|2)/u(1) coset construc-

tion. Parafermions of the A
(2)
2 /u(1) coset were studied in [7], their algebra is also graded by

the ZN group. Then in the recent years in series of papers [8 – 12] Dotsenko et.al. studied

the second and the third solutions for the ZN parafermion algebra from the appendix to

the paper [1]. And finely last year Jacob and Mathieu [13, 14] studied a new possibility for

the ZN algebra (N even): the parafermion dimensions being ∆i = 3i(N − i)/2N.

A unified algebraic description of parafermionic conformal field theories was still miss-

ing in the physical literature. The aim of this paper is to develop purely algebraic approach

to conformal algebras of parafermionic type, and to illustrate its power on a few simple

interesting examples. The presented Jacobi-type condition involves only operator product

expansion relations. This generalized Jacobi identity in our opinion is the simplest tool to

check the selfconsistence of conformal algebras. It allows to use the so called bootstrap

approach in construction of new parafermionic theories, the same approach which was used

to build new W-algebras in the early years of their study.

After the first version of this paper appeared on the web we learned about the theory of

generalized vertex algebras developed in the mathematical literature. The most important

reference is a monograph by C. Dong and J. Lepowsky [15]1 in which conformal algebras of

parafermionic type (generalized vertex algebras) are introduced for the first time from the

mathematical point of view. The first part of our paper (sections 2 and 3) has substantial

overlap with the theory developed in the book. In particular the crucial notion of commu-

tation factor and the generalized Jacobi identity are present in [15]. There are a few levels

of generalization in the monograph, we suppose that our description of parafermionic con-

formal algebras corresponds to the most general concept in the book - abelian intertwining

algebra (sections 11, 12 of [15]).

Mathematically oriented readers would also be interested to consult a recent work by

B. Bakalov and V. Kac [16]. In this paper generalized vertex algebras are introduced using

the notion of polylocal fields. The definition of a generalized vertex algebra here is slightly

more general than the one from [15]. The “Borcherds identity” (formula (27) in [16]) has

exactly the same form as our generalized Jacobi identity (3.6) up to a difference in the

choice of normalization of the commutation factors.

Contrary to the references [15] and [16] we focus here on the applications of the alge-

braic approach to the study of parafermionic conformal field theories. We employ this ap-

proach for the analysis of a few relatively simple but instructive examples of parafermionic

algebras, for which we present the full set of algebraic relations, calculate the structure

constants and the commutation factors, discuss the representation theory.

The paper has the following structure. In section 2 we fix notations, define conformal

algebras of parafermionic type and introduce the notion of commutation factor which is

crucial for further developments and discuss consistency relations for commutation factors.

1We are grateful to J. Lepowsky for letting us know about the monograph.
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In section 3 the Jacobi-type condition is derived. The general commutator formula is stated

in section 4. Next four sections are devoted to examples of parafermionic algebras. The

first warmup example is the classical ZN invariant parafermion algebra. Next we study the

algebra of sl(3) fermions, formed by three dimension 1/2 fields (associated with the roots

of the sl(3) Lie algebra) coupled to each other in nontrivial way. The third example is the

generalization of the second one to the sl(n) case. And the last example is the algebra of

the sl(2|1)2/u(1)2 coset, this algebra is generated by four dimension 1 fields and one free

fermion field. A short summary is given in section 9.

2. Framework and notation

In two-dimensional conformal field theory the conformal algebra is generated by a set of

conformal fields φi(z) of given conformal dimensions ∆(φi). The algebraic relations between

the fields are operator product expansions. We refer the reader to the standard texts on

conformal field theory and vertex algebras [17 – 21].

We will deal here with parafermionic conformal field theories, in which the operator

product expansion of any two fields has the following form:

A(z)B(w) =
1

(z − w)α

(

[

AB
]

α
(w) +

[

AB
]

α−1
(w)(z − w) +

[

AB
]

α−2
(w)(z − w)2 + · · ·

)

,

(2.1)

i.e. it is a general operator product expansion with one important restriction that except

the overall singularity (z − w)−α the integer powers of (z − w) only are present in the

brackets on the right hand side of the equation. The singularity α = α(A,B) depends on

the fields A and B, the dependence is always assumed even when not written explicitly.

This singularity can be calculated from conformal dimensions as

α = ∆(A) + ∆(B) − ∆(
[

AB
]

α
). (2.2)

The expression
[

AB
]

n
is the so called n-product of fields A and B. It is the field, arising at

the (z −w)−n term of the operator product expansion of the fields A(z) and B(w) around

w as it appears in (2.1). We usually assume that the most singular term
[

AB
]

α
is not zero.

The singularity α doesn’t have to be integer. It can be any real number but normally it

is rational. The standard conformal algebras (e.g. Virasoro, affine Kac-Moody, W-algebras)

are also of parafermionic type according to our definition, but all the singularities are

integer. So we study here a more general theory, and we will focus on the case when the

operator product expansion singularities are not integer.

We should comment that parafermionic conformal field theories are not the most gen-

eral conformal field theories. There are theories in which the powers of (z−w) in the given

operator product expansion differ by a non-integer number. The exact algebraic meaning

of such relations is yet to be understood.

In order to see that the algebra is of parafermionic type one should choose an appro-

priate basis of fields, since an operator product expansion which looks like (2.1) in one

basis can be of mixed form in another basis.
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Now we want to introduce the mode expansions of the fields:

A(z) =
∑

n∈−∆(A)+ε(A)+Z

Anz−n−∆(A). (2.3)

So we keep the standard notation for the modes, which is very convenient from the physical

point of view: in this convention positive modes are annihilation operators and negative

modes are creation operators. The sector of the representation is encoded in the twisting

ε ∈ R/Z. If ε(A) = 0 then the powers of z are integer in (2.3) and we say that the field

A(z) is in the untwisted sector. Not any value of the twisting is allowed, it should be

consistent with the operator product expansion relations. We should note that in the case

of parafermionic algebras the action of a field mode on a state changes the sector of the

state.

The formula (2.3) is reverted as following:

An =

∮

0
dz A(z)zn+∆(A)−1, (2.4)

where
∮

0 means integration around zero, 1
2πi is always assumed although is not written

explicitly.

One should be able to express the reversed operator product expansion B(w)A(z) in

terms of the operator product expansion A(z)B(w) itself. In the case of standard conformal

algebras (α ∈ Z) the rule is B(w)A(z) = −A(z)B(w) if both A and B are fermionic and

B(w)A(z) = A(z)B(w) if at least one of them is bosonic. When α /∈ Z it is not clear a

priori how to exchange the fields in the operator product expansion, since some phases are

involved. We overcome this difficulty by multiplying the operator product expansion by

its most singular term. So we introduce the following axiom:

A(z)B(w)(z − w)α = µABB(w)A(z)(w − z)α. (2.5)

This equation is also a definition2 of the commutation factor µAB which is a complex

number different from zero, and normally its absolute value is 1.

We add the axiom (2.5) to our definition of the parafermionic conformal algebra. This

axiom is a key point of the theory, once one accepts it, all the following derivations are

obtained almost automatically.

Now we are ready to clarify the exact meaning of an operator product expansion (2.1).

There are two approaches: mathematical and physical. In the mathematical approach a

field is a formal power series of type (2.3), where z is just a formal variable, then the

operator product expansion of two fields is just a product of two power series, but when

one rearranges some modes in the product, power terms in (z − w) appear (see e.g. [20]

for details). In the physical approach the fields are physical quantum fields in a two-

dimensional quantum field theory, and the variable is a complex variable, the real and

2The definition of parafermionic mutual locality given in (8) of [16] is essentially the same, the only

difference is in the normalization of the commutation factor.
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imaginary parts of which are physical coordinates. Then in the operator product expansion

one always assumes the radial ordering (compare [18], equation (2.9)):

(z − w)αR(A(z)B(w)) =

{

(z − w)αA(z)B(w), |z| > |w|,
µAB(w − z)αB(w)A(z), |z| < |w|. (2.6)

One can use either of the approaches but sometimes one is more convenient than another.

In the case of standard (α ∈ Z) conformal algebras µAB = −(−1)α if both A and B

are fermionic and µAB = (−1)α if at least one of them is bosonic. But the commutation

factor is different from ±1 in general, and we will see such examples in the next sections.

By exchanging the fields in (2.5) second time one shows that the commutation factor

should satisfy the following consistency conditions:

µABµBA = 1 (2.7)

and if we assume that the term
[

AA
]

αAA
6= 0 then it follows that

µAA = 1. (2.8)

However in some situations one should keep the possibility that µAA = −1, but if this is

the case then
[

AA
]

αAA
= 0, and then the real singularity exponent is actually αAA − 1 and

not αAA.

If the operator product expansion of two basic fields B(w) and C(v) gives a third one

D(v):

B(w)C(v) =
D(v)

(w − v)αBC
+ · · · , (2.9)

then exchanging another basic field A(z) with B(w) and then with C(v) is essentially the

same as exchanging A(z) with D(v). Therefore µAD is proportional to µABµAC . The exact

statement is

µAB µAC = µAD rABC , rABC = (−1)αAB+αAC−αAD = ±1. (2.10)

It is also implicitly stated here that αAB + αAC − αAD ∈ Z.

To prove the statement consider the following regular function in the 3 variables z,w, v:

R(z,w, v) = A(z)B(w)C(v)(z − w)αAB (z − v)αAC (w − v)αBC . (2.11)

Exchange the field A(z) with B(w) and then with C(v) and then use the expansion (2.9)

and take a limit w → v, the result is

lim
w→v

R(z,w, v) = µABµACD(v)A(z)(v − z)αAB+αAC . (2.12)

Since this function should also be regular in v around z we conclude that αAB +αAC−αAD ∈
Z. Now let us first use the expansion (2.9) and then exchange the fields A(z) and D(v)

and then again take the limit w → v to get:

lim
w→v

R(z,w, v) = µADD(v)A(z)(z − v)αAB+αAC−αAD(v − z)αAD . (2.13)
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Comparing the two expressions above we obtain the statement (2.10).

The condition (2.10) also follows from the generalized Jacobi identity stated in the

next section and should not be checked once all the Jacobi identities are satisfied.

We should remark here that if we do not specify any field in the operator product

expansion of B(w) and C(v), i.e.

B(w)C(v) = O((w − v)−αBC ), (2.14)

then there is no restriction on the product µABµAC for any field A.

Conformal algebras of parafermionic type are connected in some sense to the so called

color (or generalized, or “ε-”) Lie algebras ([22 – 25] and some later papers). These are Lie

algebras with the bracket relation [x, y] = xy − εxyyx, so the bracket is not symmetric or

antisymmetric in general: [x, y] = −εxy[y, x].

3. Generalized Jacobi identity

Here we derive the analogue of the Jacobi identities for the conformal algebras of

parafermionic type. But first we would like to express the
[

BA
]

n
products in terms of

[

AB
]

n
products. According to our axiom (2.5) the order of A(z) and B(w) in the operator

product expansionis reversed as following

B(w)A(z) =
µBA

(w − z)α

(

[

AB
]

α
(w) +

[

AB
]

α−1
(w)(z − w) +

[

AB
]

α−2
(w)(z − w)2 + · · ·

)

,

(3.1)

and then one expands the fields in the second variable (we also switch w ↔ z to get the

convenient form):

B(z)A(w) =
µBA

(z − w)α

(

[

AB
]

α
(w) +

(

∂
[

AB
]

α
(w) −

[

AB
]

α−1
(w)

)

(z − w)

+

(

1

2!
∂2

[

AB
]

α
(w) − ∂

[

AB
]

α−1
(w) +

[

AB
]

α−2
(w)

)

(z − w)2 + · · ·
)

,

(3.2)

so the
[

BA
]

x
products are obtained from the

[

AB
]

x
products as

[

BA
]

α−n
= µBA

n
∑

j=0

(−1)j

(n − j)!
∂n−j

[

AB
]

α−j
. (3.3)

It immediately follows that (if
[

AA
]

α
6= 0)

[

AA
]

α−1
=

1

2
∂
[

AA
]

α
, (3.4)

and more generally

[

AA
]

α−n
=

1

2

n−1
∑

j=0

(−1)j

(n − j)!
∂n−j

[

AA
]

α−j
, n ∈ 2Z + 1, (3.5)
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i.e. the pole
[

AA
]

α−n
for odd n is just a linear combination of derivatives of higher poles.

Now we proceed to the Jacobi type condition which involves three fields A, B and C.

It is an analogue of the Jacobi identity for Lie algebras. The condition is:

∑

j≥0

(−1)j
(

γAB

j

)

[

A
[

BC
]

γBC+1+j

]

γAB+γAC+1−j

−µAB(−1)αAB−γAB
∑

j≥0

(−1)j
(

γAB

j

)

[

B
[

AC
]

γAC+1+j

]

γAB+γBC+1−j

=
∑

j≥0

(

γAC

j

)

[[

AB
]

γAB+1+j
C

]

γBC+γAC+1−j
.

(3.6)

All three sums are finite, the upper bound is given by the order of singularity of the

corresponding fields. The parameters γ differ from the corresponding singularity exponents

α by an integer number: αAB − γAB, αAC − γAC , αBC − γBC ∈ Z. This identity is a modified

version of the well known Borcherds identity, however an essential difference is the presence

of the commutation factor µAB.3

We say that the theory is associative up to a certain order in the expansion of two

fields A and B if the condition (3.6) is satisfied for the inner n-products being of this and

more singular order. That means that if for any fields A, B one checks the identity (3.6)

for γAB ≥ nAB−1 then the theory is self consistent up to the term
[

AB
]

nAB
(w)(z−w)−nAB

in the operator product expansion of A and B.

The generalized Jacobi identity (3.6) is derived using the standard trick: double inte-

grating the function

f(z,w) = A(z)B(w)C(0)(z − w)γAB wγBC zγAC (3.7)

on z and w in two different ways: the first is the integration on w around 0, then on z

around 0 minus the opposite order; the second is the integration on z around w, then on

w around 0:
∮

0
dz

∮

0
dwf(z,w) −

∮

0
dw

∮

0
dzf(z,w) =

∮

0
dw

∮

w
dzf(z,w), (3.8)

there the internal (right) integral is taken first. Then the first integration gives the left

hand side of (3.6), the second integration gives the right hand side.

In the case of usual conformal algebras (all the mutual singularities α are integer) take

γAB = 0, γBC = p − 1, γAC = q − 1, where p, q ∈ Z to get4 the Jacobi identity:

[

A
[

BC
]

p

]

q
− (−1)|A||B|[B

[

AC
]

q

]

p
=

∞
∑

j=0

(

q − 1

j

)

[[

AB
]

1+j
C

]

p+q−1−j
, (3.9)

3In mathematical literature a similar Jacobi type identity is introduced in [15]: the relation (11.9)

in section 11 “Intertwining operators” of the book contains the same information, although written in a

different form. The Borcherds identity (27) in ref. [16] coincides with (3.6) above if one uses the same

normalization of the commutation factor.
4One should use the identity

`

0
n

´

= δ0,n in the derivation.
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which can be found elsewhere (see for example [26], formula (2.3.21)). |A| and |B| are

parities of the fields. This formula is also valid when only αAB is integer, and two other

singularities are arbitrary. (p and q are not integer any more in this case.)

4. Commutator formula

Here we derive the generalized commutator formula for the modes of two fields, the operator

product expansion of which is of parafermionic type.

In this section it will be convenient to change the notation. We will consider here only

one operator product expansion relation:

A(z)B(w) =
1

(z − w)α

(

C(0)(w) + C(1)(w)(z − w) + C(2)(w)(z − w)2 + · · ·
)

. (4.1)

So comparing to (2.1) we have changed: C(j) =
[

AB
]

α−j
.

The main statement of this section is that the operator product expansion (4.1) is

equivalent to the following commutator formula for the field modes:

∞
∑

j=0

(

α−k

j

)

(−1)jAmBn−m−µAB(−1)k
∞
∑

j=0

(

α−k

j

)

(−1)jBn−m′Am′ =

k−1
∑

l=0

(

γ

k−1−l

)

C(l)
n .

m=−∆A+α−k+γ+1−j m′=−∆A+γ+1+j

(4.2)

Changing γ → m + ∆A − 1, n → n + m we get a different form which is usually more

convenient:

∞
∑

j=0

(

α−k

j

)

(−1)j
(

Am+α−k−jBn−α+k+j − µAB(−1)kBn−jAm+j

)

=
k−1
∑

l=0

(

m+∆A−1

k−1−l

)

C
(l)
m+n.

(4.3)

Here k ∈ Z is equal to the number of operator product expansion singular terms taken into

account and can be any integer. The derivation of the commutator formula is based on the

same standard trick: double integration (3.8) of the following expression

f(z,w) = A(z)B(w)(z − w)α−k(z/w)γwn+∆(C(0))+k−2 (4.4)

in two ways as described in the previous section. Then the first way of integration results

in the left hand side of (4.2), the second way gives the right hand side.

At this point it becomes clear why we call the factor µ a commutation factor: it appears

when one commutes two field modes.

Infinite sums are involved on the left hand side of commutator formulas (4.2), (4.3).

However as usual the quadratic terms are “nicely” ordered: the modes with “very large”

indices are on the right. So if one acts by these infinite sum operators on any state in the

highest weight representation, the sums are truncated and become finite.

In the case of usual conformal algebras (α ∈ Z) taking k = α one recovers the standard

commutator formula which can be found elsewhere.

– 8 –
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Now we want to discuss how many terms in the operator product expansion one should

take and what are the relations between the commutator formulas with different k. The

commutation relations (4.3) with smaller k can always be obtained from those with larger

k. So the larger k relations are more informative, which is reasonable, since more terms

in the operator product expansion are taken into account. The commutation relations are

used to build representation theory of the algebra, e.g. we want to be able to exchange the

modes in order to calculate the expectation values of products of the modes. For that it

is sufficient to know all the singular terms (i.e. of order (z − w)−n, n > 0) in the operator

product expansion of any two fields in the theory. So for the needs of representation theory

it is sufficient to take k a largest integer number smaller then the singularity α, smaller

number of terms may be insufficient to build a meaningful representation theory.

5. Classical ZN parafermions

Here we present the classical example of parafermionic conformal field theory, discovered

in the pioneering work [1]. These theories are graded by ZN group and coincide with the

coset
sl(2)N
u(1)

, (5.1)

the central charge of which is equal to

c = 2
N − 1

N + 2
. (5.2)

The algebraic data is the following: there are N fields ψi of conformal dimensions

∆i = ∆N−i =
i(i − N)

N
, i = 0, 1, 2, . . . , N − 1, (5.3)

the field ψ0 is just the identity field. The operator product expansions are ZN graded:

ψi(z)ψj(w) =
ci,j

(z − w)αi,j

(

ψi+j(w) + O(z − w)
)

, (5.4)

where all the indices are taken modulo N and the singularity is

αi,j = ∆i + ∆j − ∆i+j. (5.5)

The commutation factors are easily calculated using the commutator factor rela-

tion (2.10), they are all equal to 1:

µi,j = 1, (5.6)

and it follows that

cj,i = ci,j . (5.7)

One can check that the Jacobi identities (3.6) are satisfied up to the terms explicitly

specified in the operator product expansions (5.4) if all the structure constants are fixed

to the values, calculated in the paper [1] (using the method of correlation functions). The

– 9 –
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results can be found there. One also obtains from the Jacobi relations the next to leading

term in the expansion (5.4):

[

ψiψj

]

αi,j−1
=

∆i+j + ∆i − ∆j

2∆i+j
∂ψi+j . (5.8)

This term is also explicitly written in the appendix A of [1]. If i + j = N then this term

vanishes. The next term in the operator product expansion of two conjugate fields ψi and

ψN−i has conformal dimension 2, and we study from the Jacobi identities that all these

terms
[

ψiψN−i

]

αi,N−i−2
, 1 ≤ i ≤ N/2 are proportional to the same field. This dimension

2 field can be identified with an energy-momentum field T (z) of the theory. So the ope of

conjugate fields takes the form

ψi(z)ψN−i(w) =
1

(z − w)2∆i

(

1 +
2∆i

c
T (w)(z − w)2 + O((z − w)3)

)

, (5.9)

where we have fixed the normalization of the parafermionic fields: ci,N−i = 1, 0 < i ≤ N/2.

The field T is not an independent field since it is equal to the nonsingular term in the

operator product expansion of ψ1(z) and ψN−1(w). It satisfies the Virasoro algebra of

central charge c.

As a simple example of the use of the generalized Jacobi identities (3.6) we show

how to calculate the value of the central charge. We take A = B = ψ1, C = ψN−1,

γAB = α1,1, γBC = 2∆1 − 3, γAC = 2∆1 − 1 in (3.6) and get the formula (5.2).

Jacobi identities lead also to additional relations between the next terms in the operator

product expansions of basic fields. In particular all the singular terms in the operator

product expansions of basic fields are related to the nonsingular terms in the operator

product expansions of other basic fields, which makes the representation theory of the

algebra reasonable. There are also relations between nonsingular terms in the operator

product expansions.

We would like to note here that other ZN parafermionic theories exist, some of them

containing commutation factors different from 1 (e.g. the algebras in [6, 7, 14]).

6. sl(3) fermions

ψ1

ψ2 ψ1

ψ2

ψ3 ψ3

Here we discuss a very interesting example of a

parafermionic conformal field theory. It is formed by

3 copies of standard free fermions, coupled one to each

other by parafermionic type relations. The theory is

given by the following coset:

sl(3)2
u(1)2

, (6.1)

and so the central charge of this theory is

c =
6

5
. (6.2)

– 10 –



J
H
E
P
0
2
(
2
0
0
7
)
0
7
4

The theory is only a special case of general coset construction g/u(1)r introduced and

studied in [4]. Here g is a simple Lie algebra, r is its rank. However we are convinced that

the theory deserves a special study.

There are three fields of dimension 1/2: ψ(i), i = 1, 2, 3, corresponding to the 3 pairs

of opposite roots of sl(3). The operator product expansion of each field with itself is the

standard free fermion relation:

ψ(α)(z)ψ(α)(w) =
1

z − w
+ O(z − w). (6.3)

The operator product expansion of two different fields gives the third one:

ψ(α)(z)ψ(β)(w) =
cα,βψ(γ)(w)

(z − w)1/2
+ O((z − w)1/2), α 6= β 6= γ. (6.4)

The algebra is obviously Z2×Z2 graded. We will assign the following gradings to the fields:

ψ(1) grading is (1, 0), ψ(2) grading is (0, 1), ψ(3) grading is (1, 1), and the identity field is

(0, 0) graded.

The structure constants are not all independent. The axiom (2.5) implies

cα,β = µα,βcβ,α. (6.5)

There are 6 parameters (µ1,2, µ2,3, µ3,1, c1,2, c2,3, c3,1) to be fixed by the Jacobi identi-

ties (3.6). All the identities are satisfied if and only if

µ1,2 = µ2,3 = µ3,1 = x2,

c1,2 = c2,3 = c3,1 =
x√
2
,

x = e±
iπ
4 , e±

3iπ
4 . (6.6)

We will make the choice x = e−
iπ
4 here, then one obtains the commutation factors: µ1,2 =

µ2,3 = µ3,1 = −i = −µ2,1 = −µ3,2 = −µ1,3.

To calculate the relations between the modes of the fields one has to use the commu-

tator formula (4.3), the result is:

ψ(α)
n ψ(α)

m + ψ(α)
m ψ(α)

n = δ0,m+n, (6.7)
∞
∑

j=0

(

j−1/2

j

)

(

e
iπ
4 ψ

(α)
m−1/2−jψ

(β)
n+1/2+j + e−

iπ
4 ψ

(β)
n−jψ

(α)
m+j

)

=
1√
2
ψ

(γ)
m+n, (6.8)

where m,n ∈ Z/2 and in the second relation α, β, γ are all different and ordered: (α, β, γ) =

(1, 2, 3) or (2, 3, 1) or (3, 1, 2). The exact form of these commutation relations appears here

for the first time.

Unitarity can be introduced by the standard conjugation relation:

(ψ(α)
n )† = ψ

(α)
−n , (6.9)

the generalized commutation relations above are invariant under this conjugation.

Next we would like to obtain the expression for the energy-momentum field of the

theory. We know the energy-momentum fields of the three free fermion subalgebras: T (α) =

– 11 –



J
H
E
P
0
2
(
2
0
0
7
)
0
7
4

−1
2

[

ψ(α)∂ψ(α)
]

0
= 1

2

[

ψ(α)ψ(α)
]

−1
. Let us calculate the conformal weight of one of the

parafermion fields with respect to another energy-momentum field, i.e. we want to calculate
[

T (α)ψ(β)
]

2
for α 6= β. Substitute in the generalized Jacobi identity (3.6) A = B =

ψ(α), C = ψ(β), γAB = −2, γBC = γAC = −1/2 to get that

[

T (α)ψ(β)
]

2
=

1

16
ψ(β), α 6= β. (6.10)

This result shows that two free fermions lie in the twisted representation of the subalgebra

generated by the third one. It is easy to guess that the total energy-momentum tensor T

should be proportional to the sum of the three energy-momentum fields. And the factor

is easily calculated from the condition
[

Tψ(α)
]

2
= 1

2ψ(α). We conclude that the total

energy-momentum field is

T =
4

5

3
∑

α=1

T (α) = −2

5

3
∑

α=1

:ψ(α)∂ψ(α):, (6.11)

where : : is the standard normal ordering. We leave as an exercise to check that the field T

above satisfies the operator product expansion relation of the Virasoro algebra with central

charge c = 6/5.

The three point correlation function of the parafermionic fields is

<ψ(α)(z1)ψ
(β)(z2)ψ

(γ)(z3)> =
e−

iπ
4

εαβγ

(z1 − z2)1/2(z2 − z3)1/2(z1 − z3)1/2
, (6.12)

where εαβγ is the standard antisymmetric tensor and we still follow the choice x = e−
iπ
4 .

We would like to say a few words about representation theory of the sl(3) fermion

algebra. The main tool in the construction of the representation theory is the commutation

relations (6.7), (6.8). A highest weight representation is constructed by applying creation

operators (nonpositive modes of the three generating fermion fields) to a highest weight

state. A highest weight state is a state which is annihilated by all positive modes of

the generating fields. The highest weight state of the algebra is also a highest weight

state of the free fermion subalgebras. The free fermion algebra has two highest weight

representations: the vacuum representation and the twisted representation. So the highest

weight representation of the full sl(3) fermion algebra should be a combination of these

two representations. It is easy to see from (6.7), (6.8) that not all the combinations are

allowed. The consistent representations are build from the vacuum highest weight state

|0, 0, 0>, which is a vacuum state with respect to all three subalgebras, and from the

states |0, σ, σ>, |σ, 0, σ>, |σ, σ, 0>, which are vacuum states with respect to one of the

free fermion subalgebras and twisted states with respect to two other subalgebras. The

conformal dimension of the vacuum representation is 0, the conformal dimension of the

second type representation is 4/5(1/16 + 1/16) = 1/10.

We would like to list here a few examples of states in the vacuum representation:

ψ
(β)
−5/2ψ

(α)
−3/2ψ

(α)
−1/2|0, 0, 0>,

ψ
(3)
3 ψ

(1)
−4ψ

(3)
−5/2ψ

(3)
−3/2ψ

(2)
1 ψ

(1)
−3/2|0, 0, 0>,

ψ
(2)
−1/2ψ

(1)
5/2ψ

(3)
−5ψ

(1)
−3ψ

(1)
−2ψ

(2)
−7/2|0, 0, 0>.

(6.13)
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The rule for the choice of integer or half-integer modes is the following: as one adds

operators from the left at any stage the sum of modes should be integer, if the Z2 × Z2

charge of the string of operators is (0, 0), and the sum of modes should be half-integer

otherwise.

The examples of states in the representation generated from the highest weight state

|0, σ, σ> are

ψ
(3)
3/2

ψ
(1)
−4ψ

(3)
−5ψ

(3)
−3ψ

(2)
1/2

ψ
(1)
−3/2

|0, σ, σ>,

ψ
(2)
−2ψ

(1)
5/2ψ

(3)
−5/2ψ

(1)
−3ψ

(1)
−2ψ

(2)
−7 |0, σ, σ>.

(6.14)

The rule is basically the same as above, the only difference is that one should also count

the state |0, σ, σ> itself as it would carry a half-integer mode and a Z2 ×Z2 grading (1, 0).

As a last remark on the representation theory we would like to note that a kind of

Poincare-Birkhoff-Witt (PBW) theorem should hold, but we are even not sure how to

choose the PBW basis in the case of representations discussed above.

A few words about parafermionic models of higher level cosets:

sl(3)N
u(1)2

. (6.15)

The parafermionic algebra becomes ZN × ZN graded. It is generated by N2 fields

ψ(i,j), i, j = 0, 1, . . . , N − 1 with ψ(0,0) being the identity field. The conformal dimen-

sions are given by the following formula

∆i,j = max(i, j) − i2 + j2 − i j

N
. (6.16)

The operator product expansion of two fields ψ(i,j) and ψ(k,l) gives the field ψ(i+k,j+l), where

all the indices are taken modulo N . A study of generalized Jacobi identities reveals that

all the commutation factors are 2N -roots of unity, i.e. µ2N = 1, and that some structure

constants vanish if N is odd. These ZN × ZN graded algebras contain many ZN graded

subalgebras, different from those which have ever been studied.

7. Simply laced fermions

In this section we generalize the sl(3) fermion algebra from the previous section. The

underlying root system is the root system of a simple Lie algebra g of A-D-E type. The

corresponding coset is
g2

u(1)r
, (7.1)

where r is the rank of the algebra g.

The roots of a simply laced Lie algebra are all of the same length. Two root directions

may be either orthogonal or having the angle π/3 between them. We associate to every

root direction α a free fermion algebra generated by a field ψ(α):

ψ(α)(z)ψ(α)(w) =
1

z − w
+ O(z − w). (7.2)
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Two fields are not coupled if the corresponding root directions are orthogonal. If the root

directions are not orthogonal then the fields are coupled in a parafermionic way:

ψ(α)(z)ψ(β)(w) =

{

O((z−w)0), α and β are orthogonal,

cα,βψ(α+β)(w)

(z−w)1/2
+O((z−w)1/2), α and β are not orthogonal.

(7.3)

It is not clear what is the grading abelian group in the case of algebraic relations described

above. Since due to (7.2) the square of each element is identity, the grading group should

be Z
k
2 for some integer k. However the number of generating fields in the theory is in

general less than 2k.

The structure constants cα,β and the commutation factors µα,β are to be fixed by the

Jacobi identities. In fact there is a number of solutions to the Jacobi identities, although

we expect that all of them are equivalent from the physical point of view. If the root

directions α and β are not orthogonal, then α, β, α + β form an sl(3) root subsystem, and

therefore the structure constants and the commutation factors for the corresponding sl(3)

fermion subalgebra are subject to the relations (6.6). The commutation factors between

the orthogonal fermions are equal ±1. The naive expectation that the fermions which are

not coupled are all mutually anticommutative is not true in general: such solution exists

only in the case g = sl(4) and for the higher rank algebras the commutation factors for the

orthogonal root directions can not be chosen all of the same sign!

We will present explicitly one of the solutions for the case g = sl(n), for general n. The

root directions of sl(n) satisfy the “so(n) pattern” in the sense that the fusion rules are

identical to those of the so(n) algebra in the standard basis of antisymmetric n×n matrices.

So it would be convenient to label the fields by a pair of two numbers: ψ(i,j), 1 < i 6= j < n.

The order of indices is not important (ψ(i,j) ≡ ψ(j,i)), so we will always assume that i < j.

In this two index notation the sl(3) fermions from the previous section are written as

ψ(1) = ψ(2,3), ψ(2) = ψ(1,3), ψ(3) = ψ(1,2).

If two fields have no common indices then they are not coupled. If one of the indices is

common for two root directions then these root directions are not orthogonal and their sum

is labelled by the two distinct indices from the two pairs, for example (1, 2)+(1, 4) = (2, 4)

and the corresponding operator product expansion is

ψ(1,2)(z)ψ(1,4)(w) =
c(1,2),(1,4) ψ(2,4)

(z − w)1/2
+ O((z − w)1/2). (7.4)

We express the structure constants and the commutation factors again in terms of one

variable x, which can take one of the four values x = e±
iπ
4 , e±

3iπ
4 . In all the formulas below

we assume that (i, j) < (k, l), that means i < k or (i = k, j < l). The structure constants

are

c(i,j),(k,l) =

{

x/
√

2, i = k or j = l,

1/(x
√

2), i = l or j = k.
(7.5)

If one index is common then the commutation factor is

µ(i,j),(k,l) =

{

x2, i = k or j = l,

1/(x2), i = l or j = k.
(7.6)
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If all the indices are different then

µ(i,j),(k,l) = εijkl , (7.7)

where εijkl is antisymmetric in all 4 indices and it is equal to 1 when i < j < k < l. So we

see, that the commutation factor of two coupled fields is ±i, and the commutation factor

of two fields which are not coupled is ±1.

To satisfy the Jacobi identities one should also require the following condition

[

ψ(i,j)ψ(k,l)
]

0
+ i

[

ψ(i,k)ψ(j,l)
]

0
−

[

ψ(i,l)ψ(j,k)
]

0
= 0, i < j < k < l. (7.8)

The commutation relations read

ψ(i,j)
n ψ(i,j)

m + ψ(i,j)
m ψ(i,j)

n = δ0,m+n, (7.9)

ψ(i,j)
n ψ(k,l)

m − εijklψ
(k,l)
m ψ(i,j)

n = 0, i, j, k, l are all different, (7.10)

if the pairs of indices are the same or have no common indices. If two pairs of indices have

one common index then the commutation relation between the corresponding field modes

is of parafermionic type:

∞
∑

s=0

(

s−1/2

s

)

(

x−εψ
(i,j)
m−1/2−sψ

(k,l)
n+1/2+s + xεψ

(k,l)
n−sψ

(i,j)
m+s

)

=
1√
2
ψ

(̄i,k̄)
m+n,

(i, j) < (k, l), ε =

{

1, i = k or j = l,

−1, i = l or j = k,

(7.11)

where ī and k̄ are the two distinct indices from the set {i, j, k, l}. The condition (7.8) is

translated to the following relation:

∑

n1

ψ
(i,j)
m−n1

ψ(k,l)
n1

+ i
∑

n2

ψ
(j,k)
m−n2

ψ(j,l)
n2

−
∑

n3

ψ
(i,l)
m−n3

ψ(j,k)
n3

= 0. (7.12)

8. sl(2|1) level 2 coset

In this section we introduce a new parafermionic conformal field theory model.

It is generated by one dimension 1/2 free fermion

ψψ

B1

B2

C2

C1

field and 4 dimension 1 fields. In the end of the section

we will show that this model coincides with the coset

of the sl(2|1) affine superalgebra on level 2 by the two

u(1) currents, corresponding to the Cartan elements of

the sl(2|1) algebra.

The fields are associated to the roots of the sl(2|1)
root system as shown on the root diagram. The field ψ

is again the standard free fermion field:

ψ(z)ψ(w) =
1

z − w
+ O(z − w). (8.1)
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Each pair of the dimension 1 fields, (B1, C1) and (B2, C2) forms the psl(1|1) current algebra:

Bi(z)Ci(w) =
1

(z − w)2
+ O

(

(z − w)0
)

, (8.2)

Bi(z)Bi(w) = O
(

z − w
)

, (8.3)

Ci(z)Ci(w) = O
(

z − w
)

, (8.4)

where i = 1 or 2. The mutual commutation factor is

µBi,Ci
= −1, (8.5)

which means that the fields are anticommutative and therefore

Ci(z)Bi(w) = − 1

(z − w)2
+ O

(

(z − w)0
)

. (8.6)

The root diagram tells us what should be the fusion rules between the fields. The

operator product expansion of two fields associated with the roots α and β gives the field

associated with the root α + β if there is such a root, and the operator product expansion

is not singular if α + β is not a root. So the relations are

B1(z)B2(w) = κB1,B2

ψ(w)

(z − w)3/2
+ O

(

(z − w)−1/2
)

, (8.7)

C1(z)C2(w) = κC1,C2

ψ(w)

(z − w)3/2
+ O

(

(z − w)−1/2
)

, (8.8)

B1(z)C2(w) = O
(

(z − w)1/2
)

, (8.9)

C1(z)B2(w) = O
(

(z − w)1/2
)

, (8.10)

ψ(z)B1(w) = κψ,B1

C2(w)

(z − w)1/2
+ O

(

(z − w)1/2
)

, (8.11)

ψ(z)C2(w) = κψ,C2

B1(w)

(z − w)1/2
+ O

(

(z − w)1/2
)

, (8.12)

ψ(z)B2(w) = κψ,B2

C1(w)

(z − w)1/2
+ O

(

(z − w)1/2
)

, (8.13)

ψ(z)C1(w) = κψ,C1

B2(w)

(z − w)1/2
+ O

(

(z − w)1/2
)

, (8.14)

where the coefficients κ are structure constants.

We have checked the Jacobi identities to obtain the commutation factors:

µB1,B2
= µC1,C2

= µB1,C2
= µC1,B2

= µψ,B2
= µψ,C2

= −µψ,B1
= −µψ,C1

= −i, (8.15)

and the structure constants:

κψ,B1
= κψ,C1

= −κB1,B2
= κC1,C2

=
e−iπ/4

√
2

, κψ,B2
= κψ,C2

=
eiπ/4

√
2

. (8.16)

In the relations above the following singular terms are not specified:
[

B1B2

]

1/2
and

[

C1C2

]

1/2
. One has to take these terms into account in order to be able to write the
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meaningful generalized commutation relations between B1 and B2 and between C1 and

C2. The Jacobi identities imply that these terms are proportional, so only one new field

has to be introduced. It has conformal dimension 3/2, we will call it G. The full form of

operator product expansions (8.7) and (8.8) is

B1(z)B2(w) = κB1,B2

(

ψ(w)

(z − w)3/2
+

1
2∂ψ(w) − i

√
3

2 G(w)

(z − w)1/2

)

+ O
(

(z − w)1/2
)

, (8.17)

C1(z)C2(w) = κC1,C2

(

ψ(w)

(z − w)3/2
+

1
2∂ψ(w) − i

√
3

2 G(w)

(z − w)1/2

)

+ O
(

(z − w)1/2
)

. (8.18)

The operator product expansions of the field G with other basic fields read

ψ(z)G(w) =O
(

(z − w)0
)

, (8.19)

G(z)G(w) =
−5

3

(z − w)3
+

+
−4

3

[

B1C1

]

0
(w) − 4

3

[

B2C2

]

0
(w) + 1

3

[

ψψ
]

−1
(w)

z − w
+ O

(

(z − w)0
)

, (8.20)

G(z)B1,2(w) =

5
2
√

6
e±iπ/4C2,1(w)

(z − w)3/2
+

+

√

2
3e±iπ/4∂C2,1(w) ∓ i

2
√

3

[

ψB1,2

]

−1/2
(w)

(z − w)1/2
+ O

(

(z − w)1/2
)

, (8.21)

G(z)C1,2(w) =

5
2
√

6
e±iπ/4B2,1(w)

(z − w)3/2
+

+

√

2
3e±iπ/4∂B2,1(w) ∓ i

2
√

3

[

ψC1,2

]

−1/2
(w)

(z − w)1/2
+ O

(

(z − w)1/2
)

, (8.22)

The commutation factors of G are related to the commutation factors of ψ:

µG,A = −µψ,A, (8.23)

where A is any of the basic fields ψ,G,B1, C1, B2, C2. In particular µψ,G = −1, i.e. the

fields ψ and G are anticommutative.

The Jacobi identities are satisfied modulo a null field condition

[

B1C1

]

0
−

[

B2C2

]

0
− i

√
3

2

[

ψG
]

0
= 0. (8.24)

The algebra of 6 basic fields ψ,B1, C1, B2, C2, G is closed in the sense that all the

singular terms in the operator product expansions of two basic fields are expressed in terms

of basic fields, their derivatives and composite fields. By “composite field” we understand

a field which is equal to a nonsingular term in the operator product expansion of two basic

fields.

The algebra has a Z2 × Z2 grading and a U(1) charge. The fields B1, C1 have grading

(0, 1), B2, C2 - (1, 0), ψ,G - (1, 1). The fields B1 and C2 have charge +1, B2 and C1 have

charge −1, and ψ,G - charge 0.
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The energy-momentum field of the theory is

T =
2

3

(

[

ψψ
]

−1
−

[

B1C1

]

0
−

[

B2C2

]

0

)

. (8.25)

It satisfies the Virasoro algebra of central charge

c = −2. (8.26)

The field G(z) generates the N = 1 superconformal algebra of central charge −5/2,

the corresponding Virasoro field is TG =
[

GG
]

1
/2. The full Virasoro algebra decouples to

a sum of two commuting parts: T = TG + Tψ, there Tψ =
[

ψψ
]

−1
/2 is the Virasoro field

of the free fermion subalgebra.

The lengthy generalized commutation relations are

ψnψm + ψmψn = δn+m,0, (8.27)

(Bi)n(Ci)m + (Ci)m(Bi)n = nδn+m,0, (8.28)
∞

∑

j=0

(

j−1/2

j

)

(

e±
iπ
4 ψm−1/2−j(B1,2)n+1/2+j − e∓

iπ
4 (B1,2)n−jψm+j

)

=
1√
2
(C2,1)m+n, (8.29)

∞
∑

j=0

(

j−1/2

j

)

(

e±
iπ
4 ψm−1/2−j(C1,2)n+1/2+j − e∓

iπ
4 (C1,2)n−jψm+j

)

=
1√
2
(B2,1)m+n, (8.30)

∞
∑

j=0

(

j−1/2

j

)

(

(B1)m−1/2−j(C2)n+1/2+j + i(C2)n−j(B1)m+j

)

= 0, (8.31)

∞
∑

j=0

(

j−1/2

j

)

(

(C1)m−1/2−j(B2)n+1/2+j + i(B2)n−j(C1)m+j

)

= 0, (8.32)

∞
∑

j=0

(

j−1/2

j

)

(

e
iπ
4 (C1)m−1/2−j(C2)n+1/2+j − e−

iπ
4 (C2)n−j(C1)m+j

)

=

= −
∞

∑

j=0

(

j−1/2

j

)

(

e
iπ
4 (B1)m−1/2−j(B2)n+1/2+j − e−

iπ
4 (B2)n−j(B1)m+j

)

=

=
1

2
√

2

(

(m − n − 1

2
)ψm+n − i

√
3Gm+n

)

, (8.33)

ψnGm + Gmψn = 0, (8.34)

where we omit all the other generalized commutation relations involving field G, since the

expressions are too long. The mode expansions of the composite fields should be calculated

using the same generalized commutator formula (4.3).

Now we want to show that the above algebra describes the sl(2|1)2/u(1)2 coset. We

introduce two commuting free bosons φ1 and φ2:

φ1(z)φ1(w) = − log(z − w),

φ2(z)φ2(w) = log(z − w).
(8.35)
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(Note the sign difference!) Then the currents of the sl(2|1) affine algebra are expressed as

H1(z) ∼ i∂φ1(z), J+(z) ∼ ψ(z)eiφ1(z),

H2(z) ∼ i∂φ2(z), J−(z) ∼ ψ(z)e−iφ1(z),

F+
1,2(z) ∼ B1,2(z)e

i
2
(φ1(z)±φ2(z)), F−

1,2(z) ∼ C1,2(z)e
i
2
(−φ1(z)±φ2(z)).

(8.36)

There are 4 bosonic currents (H1,H2, J
+, J−) and 4 fermionic currents (F+

1 , F−
1 , F+

2 , F−
2 ),

they form an sl(2|1) affine algebra on level 2. H1,H2 correspond to the two Cartan elements

of sl(2|1), J+, J− - to the two even roots, F+
1 , F−

1 , F+
2 , F−

2 - to the 4 odd roots. The fields

H1, J
+, J− generate the sl(2) affine subalgebra on level 2.

9. Summary

We described conformal field theories of parafermionic type from the algebraic point of

view. The main algebraic tool, the Jacobi type identity, is presented in the explicit form.

Using this identity we calculated the commutation factors and the structure constants for

the following cosets: sl(3)2/u(1)2, sl(N)2/u(1)2, sl(2|1)2/u(1)2. We wrote the generalized

commutation relations for these parafermionic algebras, and studied the representation

theory of the algebra of the sl(3)2/u(1)2 coset theory. The theories corresponding to the

sl(3)2/u(1)2, sl(N)2/u(1)2 cosets were known since a work by Gepner [4], but the exact

algebraic relations between the fields were never studied in the past.

The results above demonstrate the power of algebraic approach in the study of

parafermionic conformal field theories. The methods described will hopefully lead to dis-

covery of new algebras, and new two-dimensional conformal models.
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